Orthogonal Polynomial Expansions for Solving Random Eigenvalue Problems

نویسندگان

  • Sharif Rahman
  • Vaibhav Yadav
چکیده

This paper examines two stochastic methods stemming from polynomial dimensional decomposition (PDD) and polynomial chaos expansion (PCE) for solving random eigenvalue problems commonly encountered in dynamics of mechanical systems. Although the infinite series from PCE and PDD are equivalent, their truncations endow contrasting dimensional structures, creating significant differences between the resulting PDD and PCE approximations in terms of accuracy, efficiency, and convergence properties. When the cooperative effects of input variables on an eigenvalue attenuate rapidly or vanish altogether, the PDD approximation commits a smaller error than does the PCE approximation for identical expansion orders. Numerical analyses of mathematical functions or simple dynamic systems reveal markedly higher convergence rates of the PDD approximation than the PCE approximation. From the comparison of computational efforts, required to estimate with the same precision the frequency distributions of dynamic systems, including a piezoelectric transducer, the PDD approximation is significantly more efficient than the PCE approximation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

Accurate solution of the Orr-Sommerfeld stability equation

The Orr-Sommerfeld equation is solved numerically using expansions in Chebyshevpolynomials and the QR matrix eigenvalue algorithm. It is shown that results of great accuracy are obtained very economically. The method is applied to the stability of plane Poiseuille flow; it is found that the critical Reynolds number is 5772.22. It is explained why expansions in Chebyshev polynomials are better s...

متن کامل

A Spectral Method via Orthogonal Polynomial Expansions on Sparse Grids for Solving Stochastic Partial Differential Equations

Most mathematical models contain uncertainties that may be originated from various sources such as initial and boundary conditions, geometry representation of the domain and input parameters. When these sources are expressed as random processes or random fields, partial differential equations describing the underlying models become stochastic partial differential equations (SPDEs). Stochastic m...

متن کامل

Extended Polynomial Dimensional Decomposition for Arbitrary Probability Distributions

This paper presents an extended polynomial dimensional decomposition method for solving stochastic problems subject to independent random input following an arbitrary probability distribution. The method involves Fourier-polynomial expansions of component functions by orthogonal polynomial bases, the Stieltjes procedure for generating the recursion coefficients of orthogonal polynomials and the...

متن کامل

Recurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials

Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$‎ ‎x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x)‎,$$ ‎we find the coefficients $b_{i,j}^{(p,q,ell‎ ,‎,r)}$ in the expansion‎ $$‎ ‎x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell‎ ‎}y^{r}f^{(p,q)}(x,y) =sumli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011